Autonomous Nested Search for Hydrothermal Venting

Andrew Branch¹, James Mason¹, Guangyu Xu², Michael V. Jakuba², Christopher R. German², James McMahon³, Steve Chien¹, James C. Kinsey², Andrew D. Bowen², Kevin P. Hand¹, Jeffrey S. Seewald²

> ¹Jet Propulsion Laboratory, California Institute of Technology ²Woods Hole Oceanographic Institution ³Naval Research Laboratory

Poster #17

Image Credit: Marcel Nicolaus, AWI

Motivation

- 8+ bodies in the Solar System are thought to harbor sub-surface liquid oceans, including **Europa and Enceladus**
- Earth-based hydrothermal vents harbor unique life and are potentially crucial to the origin of life
- Potential hydrothermal venting on Europa
- Evidence for hydrothermal venting on Enceladus [4,5]

Problem Definition

Ocean Worlds Submersible

- Single under-ice base station provides communication to Earth
- Travel 100s of km from base station
- Limited communication with Earth due to orbital occlusions and underwater acoustic communication range
- Fully autonomous operations required for weeks or months at a time
- Goal: Autonomously detect, locate, and sample hydrothermal venting

Hydrothermal Plumes

- Chemically altered seawater detectible through temperature, redox, and optical backscatter
- Hot, low density plume fluid exits vent forming buoyant plume [2]
- Density equilibrium reached and non-buoyant plume formed [2]
- Source vent can be tracked using the hydrothermal plume

Objectives

- Perform high resolution survey of region immediately surrounding hydrothermal venting
- Autonomous adaptation of proven human-in-the-loop search method [3]
- Must maintain robustness to local maxima and small-scale turbulence

Approach

- Progressively higher resolution nested surveys to pinpoint maximum
- Three Search Phases:
 - Initial spiral survey
 - Dynamic lawnmowers Nested lawnmowers

- vent fluid concentration

Spiral Survey

10000

-10000

≻ ₋₂₀₀₀₀|

- Spiral centered at the base station
- Yo-Yo pattern from surface to seafloor to locate non-buoyant plume

X (m)

Hydrothermal Vent Search Survey Type

Terminates on first contact with plume above specified threshold

Spatial Nested Search

Dynamic Lawnmower Performed at first contact with plume

- Variable size lawnmower survey to determine the extent of the plume
- Data binned at resolution of survey to
- determine local maxima

Nested Lawnmower Survey **Nested Bins** -10000 Planned Nested Survey -10000

Nested Lawnmowers

- Perform recursively higher resolution surveys of previously searched regions
- Each survey encompasses local maxima and surrounding bins
- Prioritized based on average plume strength of bin and survey resolution

Simulation

Hydrothermal Venting Model

- FVCOM based circulation and hydrothermal plume model of Axial Seamount
- GW heat source in the Axial caldera
- Initial forcing constructed with HYCOM and OSU Tidal Inversion models
- 300x300 km, 60 day simulation
- Model variables: temperature, salinity, currents, passive tracer

Baseline Search Methods

Gradient Ascent

Determine the plume gradient at a location and follow it towards stronger plume fluid [1]

Greedy Transect

Direction Set: Perform fixed pattern searching for increased plume strength. Repeat this pattern at new maxima until no new max plume values are seen [1]

Example Nested Bin Search Result

Results

Simulated Results

- 25 simulation runs per algorithm with starting x,y uniformly distributed from [-30,30] km
- Nested Search better estimates the vent location over baseline methods, however with longer search times. See table and left figure below.

Algorithm		Gradient Ascent	,
Success Rate (< 200m of ground truth)	80%	56%	4%

Deployment

- Deployed Nested Search algorithm onboard an Iver AUV in Chesapeake Bay with NRL in June 2019
- Successfully demonstrated the vehicle locating the simulated vent source location, see right figure below

True Vent Location Vs. Time

Acknowledgments

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Pasadena, California

jpl.nasa.gov

- [1] Burian, Erik, et al. 1996. Gradient search with autonomous underwater vehicles using scalar measurements." Proceedings of Symposium on Autonomous Underwater Vehicle Technology. IEEE.
- [2] German, C., and Seyfried, W. 2014. Hydrothermal processes. Treatise on geochemistry 8:191–233. [3] German, C. R. el al. 2008. Hydrothermal exploration with the autonomous benthic explorer. Deep Sea Research Part I: Oceanographic Research Papers 55(2):203–219.
- [4] Hsu, H. W. et al. 2015. Ongoing hydrothermal activities within enceladus. Nature 519(7542):207. [5] Waite, J. H. et al. 2017. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science 356(6334):155–159.